Exercise 38

Let $f(x)=\log _{b}\left(3 x^{2}-2\right)$. For what value of b is $f^{\prime}(1)=3$?

Solution

Start by taking the derivative of the function with respect to x.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[\log _{b}\left(3 x^{2}-2\right)\right] \\
& =\frac{1}{\left(3 x^{2}-2\right) \ln b} \cdot \frac{d}{d x}\left(3 x^{2}-2\right) \\
& =\frac{1}{\left(3 x^{2}-2\right) \ln b} \cdot(6 x) \\
& =\frac{6 x}{\left(3 x^{2}-2\right) \ln b}
\end{aligned}
$$

Set $x=1$ to get $f^{\prime}(1)$.

$$
f^{\prime}(1)=\frac{6(1)}{\left[3(1)^{2}-2\right] \ln b}=\frac{6}{\ln b}
$$

In order for $f^{\prime}(1)=3$,

$$
\begin{gathered}
\frac{6}{\ln b}=3 \\
\frac{\ln b}{6}=\frac{1}{3} \\
\ln b=2 \\
b=e^{2} .
\end{gathered}
$$

